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Abstract— Segmentation is the process of dividing the image into smaller parts to extract some information
from it. It is widely used in medical industry to get abnormal growth data from the medical image like MRI and
CT In this paper, we present a fast and robust practical tool for segmentation of solid tumors with minimal user
interaction to assist clinicians and researchers in radio surgery planning and assessment of the response to the
therapy. Particularly, a cellular automata (CA) based seeded tumor segmentation method on contrast enhanced
T1 weighted magnetic resonance (MR) images, which standardizes the volume of interest (VOI) and seed
selection, is proposed. Sufficient information to initialize the algorithm is gathered from the user simply by a
line drawn on the maximum diameter of the tumor, in line with the clinical practice. First the seed pixels of
tumor and background are fed to the algorithm. Using these seeds, the algorithm finds the strength maps for
both tumor and background image. These maps are then combined to get the tumor probability map. Then the
image is subjected to smoothing. Validation studies on both clinical and synthetic brain tumor datasets
demonstrate 80%-90% overlap performance of the proposed algorithm with an emphasis on less sensitivity to
seed initialization, robustness with respect to different and heterogeneous tumor types, and its efficiency in
terms of computation time.
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l. INTRODUCTION
SEGMENTATION of brain tissues in gray
matter , white matter , and tumor on medical images
is not only of high interest in serial treatment
monitoring of “disease burden” in oncologic
imaging, but also gaining popularity with the
advance of image guided surgical approaches.

the glial tumors infiltrate beyond the enhanced
margin and edema/infiltration region might be of
interest to fractionated radiotherapy in general, it is
not possible to distinguish edema and infiltration, so
usually this region is not included in primary target
planning of radiosurgery, particularly in Cyberknife

Outlining the brain tumor contour is a major step in
planning spatially localized radiotherapy (e.g.,
Cyberknife, iMRT) which is usually done manually
on contrast enhanced T1-weighted magnetic
resonance images (MRI) in current clinical
practice. On T1 MR images acquired after
administration of a contrast agent (gadolinium),
blood vessels and parts of the tumor, where the
contrast can pass the blood- brain barrier are
observed as hyper intense areas. There are various
attempts for brain tumor segmentation in the
literature which use a single modality, combine
multi modalities and use priors obtained from
population atlases.

Modalities which give relevant information
on tumor and edema/infiltration such as Perfusion
Imaging, Diffusion Imaging, or Spectroscopic
Imaging provide lower resolution images compared
to T1 or T2 weighted sequences, and the former are
generally  not  preferable  for  geometric
measurements. One of the main reasons to use
multimodality images such as T2 weighted MRI is
to segment edema/infiltration region which is
generally not observable in T1 images. Although

On the other hand, population atlases provide an
important prior to improve segmentation by
measuring the deviation from the normal brain.
Deformable registration of brain images with
tumor to the population atlas is an extremely
challenging problem and still an active research
area due to intensity variations around the tumor
mainly caused by edema/infiltration, and the
tumor mass effect, which also deforms the
healthy tissue morphology. In some studies, affine
registration has been used for this purpose, however
misalignment issues arise, especially where there is
a large deformation of the brain structures
Comparison to the works in the literature that use
different approaches and other image types is
difficult as that would require the use of the same
datasets by different groups with evaluation
performed by similar measures. For this reason,
only the results of some studies are given, instead
of a detailed comparison. Although, using manual
expert segmentations as the ground truth, different
performance measures such as Dice Overlap,
Jaccard Index, false positive and negative volume
fractions (FPVF, FNVF) were used in the literature,
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(Dice) Overlap is used as a common measure for a
comparison to previous methods here With their
automatic, multimodal, atlas based method,
Prastawa et al. have reported 86.7% average overlap
on a small dataset of only three patients with an
average 1.5 h processing time . In more recent
studies, Menze et al. re- ported 60% average
overlap on 25 glioma patients and Gooya et al.
reported 74.5% average overlap on 15 glioma
patients with about 6-14 h of processing time . In
contrast, Liu et al. reported 95.6% average overlap
on only a subset of well-performing five patients
over a 10 patient dataset using fuzzy clustering on
only FLAIR images. It should be noted that the
latter method needs intensive user interaction and
correction as 8.4 min per patient on the average .

The popular trend in the area, as in the
aforementioned approaches, is to be able to combine
information from different sources to obtain a better
segmentation. However, attempts to develop better
algorithms from the image processing perspective
that work on a particular MRI protocol continue in
parallel not only to obtain proper information from
each channel to be combined, but also due to the
practical need to routinely quantify tumors in a
clinical environment . Therefore, in this study, we
focused on an efficient and robust segmentation of
brain tumors on contrast enhanced T1 weighted MR
images with minimal user interaction.

Region-based active contour models are
widely used in image segmentation. In general,
these region-based models have several advantages
over gradient-based techniques for segmentation,
including greater robustness to noise. However,
classical active contours had the problem of being
“only as good as their initialization,” even when
using level-set surfaces in 3D. Because the tumor
class does not have a strong spatial prior, many
small structures, mainly blood vessels, are classified
as tumor as they also enhance with contrast. Ho et
al. used fuzzy classification of pre- and post-
contrast T1 images to obtain a tumor probability
map to evolve a level-set surface . Liu et al. have
adapted the fuzzy connectedness framework for
tumor segmentation by constructing a rectangular
volume of interest selected through identifying the
first and last slice of the tumor and specifying a set
of voxels in the tumor region .

Interactive algorithms have become popular for
image segmentation problem in recent years. Graph
based seeded segmentation framework has been
generalized such that graph-cuts (GC) , random
walker (RW) , shortest paths, and power watersheds
have been interpreted as special cases of a general
seeded segmentation algorithm, which solves a
minimization problem involving a graph’s edge
weights constrained by adjacent vertex variables or

probabilities. In , the connection between GC, RW,
and shortest paths was shown to depend on
different norms: (GC); (RW); (shortest paths), in
the energy that is optimized. Geodesic distances
between foreground and background seeds were
also incorporated into other shortest path-based
segmentation algorithms by .

Although it was reported that the shortest paths and
RW pro- duce relatively more seed-dependent
results, it can be argued that the global minimum
of an image segmentation energy is worth as good
as the ability of its energy to capture underlying
statistics of images , and a local minimum may
produce a solution closer to the ground truth than
that of a global minimum. Hence, with good prior
information provided as in the case of a seeded
image segmentation problem, efficiently finding
good local minima  becomes meaningful and
worthwhile.

On the other hand, cellular automata (CA)
algorithm motivated biologically from bacteria
growth and competition, is based on a discrete
dynamic system defined on a lattice, and iteratively
propagates the system states via local transition
rules. It was first used by Vezhnevets et al. (Grow-
cut) for image segmentation, which showed the
potential of the CA algorithm on generic medical
image problems. However, Grow-cut was not
designed for specific structures, such as tumors,
which  display heterogeneous content such as
necrotic and enhancing tissue. Moreover, anatomic
structures  typically have relatively smooth
boundaries, however, Grow-cut tends to produce
irregular and jagged surface results, and only an ad
hoc way of smoothing was introduced.

In this paper, we re-examine the CA
algorithm to establish the connection of the CA-
based segmentation to the graph-the- oretic methods
to show that the iterative CA framework solves the
shortest path problem with a proper choice of the
transition rule. Next, as our application is in the
clinical radiosurgery  planning, where manual
segmentation of tumors are carried out on
contrast enhanced T1-MR images by a radio-
oncology expert, we modify the CA segmentation
towards the nature of the tumor properties
undergoing radiation therapy by adapting relevant
transition rules. Finally, a smoothness constraint
using level set active surfaces is imposed over a
probability map constructed from resulting CA
states. Following a brief background on seeded
segmentation methods in Section I, we present
our framework for brain tumor segmentation in
Section 1ll, and demonstrate its performance via
validation studies on both synthetic, and radiation
therapy planning expert-segmented data sets in
Section 1V, followed by conclusions in Section V.
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Il. BACKGROUND

A Seeded image segmentation
Given ar’ fndirected graph(y = (V. [} with vertice§ly = |/
and edges . In image segmentationf problems, vertices
Yjare céfyesponding to image pixels, while edge weights are
.si_m_ilarity measures between neighboring pixels based on image
features (e.g., intensities). Each vertex has an attribute, which 1s
an mdicator of the probability of;a label (e.g.. a foregpound and a
background label). With the foreground F and background B
seeds supplied by the user, the labeling pr b_lfzm 15 solved by

E t’u-‘ |J — Iy
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I = argiamin
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In the final solution, the vertices which have the value @; =
(.5 are labeled as foreground and r; <{ (1. are labeled as back-
ground The (1) represents the general optimization problem of
la}}cﬁ.ﬂ; 1n graph-theoretic 1 segmentation. We will show g=
. that this optimization problem for ca_p’ge solved by a CA-based -
" algorithm. -

continuous state set on a finite machine are given

There are various attempts of using CA 1n image processing
problems including: image enhancement (sharpenmg and smoothing)
, image filtering. edge detection , and 1mage segmentation (Grow-cut)

Grow-cut method uses a continuous state cellular automata to
interactively label images using user supplied seeds. The cells are
corresponding to image pixels, and the feature vector is RGB or gray
scale intensities. The state set ST for each image pixel consists of
a “strength” value f in a continuous interval

[01 . a labell and an image feature vector {The automata is
initialized by assigning corresponding labels at seeds with a strength
value between 0 and 1 where a higher value reflects a higher
confidence in choosing the seed. Strengths for unlabeled cells are set
to 0. A pseudo code for the Grow-cut algorithm 1s given below :

/] For each cell
for
/i Copy previous state
L=y
oL = 0t
/{ Neighbors try to attack current cell for
VeV
i, — Cyll2) - 9 >
prely
o = 8l Co— Cyll2) 0y

where the argument;fis for instance, the absolute difference between
the intensities of two neighboring pixels.

The surpnising success of this simple algorithm, especially on medical
images, motivated us to further analyze the algorithm We showed
that the result of the iterations of this algorithm converges to that of
the shortest paths algorithm by modifying the similarity function

used:

B cellular automata in image segmentation

A cellular automata is basically a computer algorithm that 1s
discrete in space and time and operates on a lattice of cells

Since 1t was first proposed by Von Neumann and Ulam . Cellular
Automata has attracted researchers from wvarious fields in both
physical and social sciences because of its simplicity, and potential in
modeling complex systems .
Each individual cell 1s in a specific state and changes synchronously
depending on the states of some neighbors as determuned by a local
update rule . They are parallel, local and homogeneous., since the
state of any cell depends only on the states of the local neighbors at
the previous time step and the update rules are same for every cell.

Formally, a cellular automaton (CA) 1s a triple 11:(8_3\'?’) .7 whei®
is a nonempty set, called the state set. is thé neighborhood, and
&Sx—5 is the local transition function (rulefiv, which is the
argument of §, indicates the states of the neighborhood cells at a
given time, while § which is its value, is the state of the central cell
at the next time step .
Although the usual definition for “Cellular Automata™ 1s in favour of
a finite state set (discrete and bounded). continuous state sets in which
the states are real numbers are also used in CA literature under the
name “Continuous CA™ or “Coupled Map Lattices™ . A detailed

discussion and some of the issues that can arise while using a

shortest paths of each pixel from the foreground seeds and the
background seeds. For each pixel. the smaller distance to the
foreground seeds produced the resulting segmentation.

III. METHOD

In this section. the complete segmentation framework to segment
brain tumors and the necrotic regions enclosed 1s presented mn detail.
An overview of the algorithm with the pseudo-code of the
implementation i1s given i Section III-A. Major steps of the
algorithm 1s explamed in detail i Sections III -B. III-C, III-D, and III-
E followed by the datasets and methods used for perfor-mance
evaluation in Section ITI-F.

A. Tumeor-Cut Algorithm

Steps of the proposed cellular automata based tumor segmentation
algorithm is shown in Fig 1. First, (a) the user draws a line over the
largest visible diameter of the tumor; (b) using this line, a VOI is
selected with foreground(red)-background(blue) seeds:

(c)—~(d) tumor CA algorithm is run on the VOI for each two sets of
seeds (for the foreground and background) to obtain strength maps for
foreground (c) and background (d) at each voxel; () two strength
maps are combined to obtain the tumor probability map Pr 6);(Ha
level set surface is initialized at f'T—{15 and the map Fris used to
evolve the surface which converges to the final segmentation map (g).
Finally, (1) the necrotic regions of the tumor 1s segmented using CA
based method with the choosen enhanced and necrotic seeds in (h).

In “Response Ewvaluation Cntena In Solid Tumeors™ (RE-CIST).
which is a widely used procedure to evaluate the treatment response
of the solid tumors, tumor progress 1s classified by measuring the
longest in plane tumor diameter in one dimension (axial. coronal,
sagittal) . Our seed selection algonithm employs the same idea to
follow the familiar clinical routine to which the clinicians are used to:
the volume of mterest (VOI), the tumor seeds and the background
seeds are determined by using the line already drawn by the user to
measure the longest diameter of the solid tumor. Similarly,
focusing on tumor segmentation problem, the seed selection
procedure starts with a single line drawn by the user along the longest
visible diameter of the tumor. Afterwards, the VOI and the seeds are
computed as follows: 1) The line 15 cropped by 15% from each end
and thickened to three pixels wide to obtain tumor seeds; 2) VOI 1s
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We note that, the original simulanity function used in Grow-cut 1s a
first order approximation to the one we utilized. In connecting
shortest paths to cellular avtomata framework., maximizing the
product of the edge weight %%  was shown to be equivalent to
mininmizing the sum of the _l(AUé "s. 1e.V%a, resulting in the
shortest path between a seed node to any nonseed node i the graph
over the negative logarithm edge weights. These weights can be
interpreted similarly to the reciprocal weightw_idefined in  Sinop
and Grady, which was shown to mfer a connection between the
shortest path algorithm and the general seeded segmentation
optimization with Aswm minimization.

Simultaneously and independently from our work, it has also been
shown that the Grow-cut algorithm is equivalent to the Belman—Ford
algorithm. which calculates the shortest paths on a weighted graph.
However, there, the motivation and emphasis was on fast hardware
implementation of the CA algorithms, due both increasing availability
of low-cost graphical hardware (GPUs), and CA algorithm’s
suitability to run on parallel processors.

Shortest path idea was utilized in other works such as , where the
Eikonal equation was solved with two different boundary conditions
constructed from foreground and back-ground seeds. Image-
dependent speed functions were inserted mto the right handside of the
Eikonal equation. whose solutions led to two distance functions:

In occasional cases of slightly concave-shaped tumors. the
maximum diameter line will not be enclosed by the tumor com-
pletely. Even imn these cases, the algorithm can perform the seg-
mentation successfully if an input 1-D line is correctly drawn to fall
wmside the tumor region. The line enlargement parameter selected for
VOI formation is determined by taking such cases into account,
hence, the VOI contains the whole tumor.

C. Adapting Transition Rule to Tumor Characteristics

In the tumor segmentation application, the cells or nodes 1n cellular
automata framework correspond to the MRI volume voxels in 3-D. A
26-cell cubic neighborhood 1s used 1n 3-D. MRI imntensities are used
as image features. The automata is imitialized with user supplied
tumor and background seeds as explained in Section III-B and
iterated by the following rule:

UL =0t and ottt =g(i, 0" )l where (" =arg H1ax (i, jet
) 16N Y
€)

where § is a pixel similarity or transition function bounded to [01 ,
which is equivalent to the edge weight function (¢} in the seeded
segmentation framework. A typical symmetric edge weight function
depending on the image features, is given by the absolute intensity
difference or gradient magnitude between neighboring nodes fand 7

glifi=e [l 1 @)

m the necrofic region. This sometimes causes the segmentation
algorithm to get stuck at necrotic to enhancing tumor transition
borders. To overcome such problems, prior knowledge that tumor
voxels are brighter in post-contrast T1-MRI can be utilized. This
can be achieved by modifying the transition function i) by
inserting a spatially-varying parameter

L. e Al LIl T Cand [ = Tutmaer
gli, §) = {(_HL_L_” if [, > I, and [j = Tn
- ,

stherwise.
The intuition here is based on the observation that the enhancing
tumor cells are brighter than the normal tissue, and more centrally

®

located necrotic core is darker. Therefore. by adjusting the .ﬁ

selected as the bounding box of the sphere having a diameter 35%
longer than the line; 3) One-voxel -wide border of this VOI 1s used as
background seeds.

Since the VOI 1s completely bounded by the background seeds,
each path connecting inside and outside the VOI is blocked by a seed.
Then, the result of labeling using only the data inside the region 1s
equivalent to using the whole volume whereas the computation time
1s significantly reduced.

One obvious drawback is that the user draws the line on only a
single slice of the tumor volume, hence it 1s not guaranteed that the
depth of the tumor will also coincide with the VOI For deter-miming
the enlargement ratio for the bounding box size, the percentage of the
volume enclosed in the sphere to the total tumor volume is calculated
for different enlargement ratio values, and the results are plotted in
Fig. 2. For our data set. 100% coverage was achieved with 2.00 times
enlargement. We used 1.35, which covers 99% of all tumors with five
different initializations, which gave a reasonable trade -off between
the 3- D inclusion of the whole tumor versus the computation time
increases due to enlargement of the volume.

where /; denotes the MR image intensity at node Z.

In the seeded tumor segmentation application over contrast
enhanced T1-weighted MRI for heterogeneous tumors, which
mostly consist of a ring enhancing region around a dark necrotic
core (and also uregular borders), most of the foreground seeds fall

D. Level Set Evolution on Constructed Tumor Probability Map

Smoothing i1s an important prior in segmentation of brain fumors
from post-contrast T1 images, because of three main reasons: First, an
area surrounded by tumor tissue 1s considered as a tumor region even
the mtensity characteristics are likely to be healthy. Secondly, it is
possible to include misclassified necrotic regions fo tumor
region, which are usually surrounded by enhanced tissue.
Finally, it is possible to exclude nearby vascular structures that
are enhanced by administration of the contrast agent.

CONCLUSION

Here we presented a segmentation algorithm for the problem of
tumor delineation which exhibit varying tissue characteristics.
This algorithm needs very less user mteraction. This can be
widely used in clinical practices

parameter, the weight reduction (1.e., the strength loss) of a tumor
state while passing through a ramp up gradient 1s adjusted to be lower
than other cases.

Qur experimental results revealed that the new tumor CA (tCA)
algorithm significantly improved the results obtained, especially on
glioblastomas .

Next Generation Intelligence in Electronics and Communication Engineering (NGIEC)

42 | Page

East Point College of Engineering &amp; Technology, Bengaluru-560049, Karnataka



International Journal of Engineering Research and Applications

ISSN: 2248-9622, pp. 39-43

www.ijera.com

[1].

[2].

[3].
[4].

[5].

[6].

[7].

8].

[9].

[10].

[11].

[12].

REFERENCES
S. Warfield, K. Zou, and W. Wells,
“Simultaneous truth and perfor-mance level
estimation (STAPLE): An algorithm for the
validation of image segmentation,” |EEE
Trans. Med Imag., vol. 23, no. 7, pp. 903—
921, Jul. 2004.
M.-R. Nazem-Zadeh, E. Davoodi-Bojd, and
H. Soltanian- Zadeh, “Atlasbased fiber
bundle  segmentation  using  principal
diffusion directions and spherical harmonic
coefficients,” Neurolmage, vol. 54, pp.
S146-S164, 2011.
K. H. Zou, S. K. Warfield, A. Bharatha, C.
M. C. Tempany,
M. R. Kaus, S. J. Haker, W. M. Wells, F. A.
Jolesz, and R. Kikinis, “Statistical vali-dation
of image segmentation quality based on a
spatial overlap index,” Acad. Radiol., vol. 11,
no. 2, pp. 178-189, 2004.
E. D. Angelini, O. Clatz, E. Mandonnet, E.

Konukoglu, L. Capelle, and H. Duffau,
“Glioma dynamics and computational
models: A re-view of segmentation,

registration, and in silico growth algorithms
and their clinical applications,” Curr. Med.
Imag. Rev., vol. 3, no. 4, pp. 262-276, 2007.
M. Prastawa, E. Bullitt, S. Ho, and G. Gerig,
“A brain tumor segmen-tation framework
based on outlier detection,” Med. Image
Anal., vol. 8, no. 3, pp. 275-283, 2004.

J. Liu, J. K. Udupa, D. Odhner, D. Hackney,
and G. Moonis, “A system for brain tumor
volume estimation via MR imaging and
fuzzy connect-edness,” Comput. Med. Imag.
Graph., vol. 29, pp. 21-34, 2005.

T. Biswas et al., “Stereotactic radiosurgery
for glioblastoma: Retro-spective analysis.,”
Radiation Oncology, vol. 4, no. 11, p. 11,
20009.

A. Gooya, G. Biros, and C. Davatzikos,
“Deformable registration of glioma images
using em algorithm and diffusion reaction
modeling,” IEEE Trans. Med. Imag., vol. 30,
no. 2, pp. 375-390, Feb. 2011.

B. Menze, K. V. Leemput, D. Lashkari, M.-
A. Weber, N. Ayache, and P. Golland, “A
generative  model for brain  tumor
segmentation in mul-timodal images,” Med.
Image Comput. Comput. Assist. Intervent.,
vol. 13, pp. 151-159, Sep. 2010.

T. F. Chan and L. Vese, “Active contours
without edges,” IEEE Trans. Image
Process., vol. 10, no. 2, pp. 266-277, Feb.
2001.

S. Ho, E. Bullitt, and G. Gerig, “Level-set
evolution  with  region  com-petition:

[13].

Automatic 3-D segmentation of brain
tumors,” in Proc. ICPR, 2002, vol. 1, p.
10532.

Y. Boykov and M.-P. Jolly, “Interactive
graph cuts for optimal boundary and region
segmentation of objects in n-d images,” in
Proc. ICCV, 2001, pp. 105-112.

Next Generation Intelligence in Electronics and Communication Engineering (NGIEC)

43 | Page

East Point College of Engineering &amp; Technology, Bengaluru-560049, Karnataka



